苏教版小学四年级下册数学奥数题带答案
一、拓展提优试题
1.三个连续自然数的乘积是120,它们的和是 .
2.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用 秒.
3.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是 米.
4.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生 人.
5.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?
6.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是 .
7.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人 名.
8.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到
A,走了31米,此问长方形ABCD的周长多少米?
9.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是 .
10.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形
ABCD的面积是 .
【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.
11.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,
那么坐在快车上的人看见慢车驶过的时间是 秒.
【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此
12.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是 .
○●○●●○●●●○●○●●○●●●○●○●●○…
13.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:
(1)水果店原有多少个火龙果?
(2)用完所有的哈密瓜后,还剩多少个猕猴桃?
14.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是 平方米.
15.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子 个.
【参】
一、拓展提优试题
1.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.
解:120=2×2×2×3×5=(2×2)×(2×3)×5,
2×2=4,2×3=6,5,
即,三个连续自然数的乘积是120,这三个数是4、5、6,
所以,和是:4+5+6=15.
故答案为:15.
【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.
2.解:列车速度为:
(285﹣245)÷(24﹣22)
=40÷2,
=20(米);
列车车身长为:
20×24﹣285
=480﹣285,
=195(米);
列车与货车从相遇到离开需:
(195+135)÷(20+10),
=330÷30,
=11(秒).
答:列车与货车从相遇到离开需11秒.
3.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.
解:画图如下:
从C点到A点的距离是:
23﹣15=8(米),
答:从C点到A点的距离是8米.
4.解:船:(16+4)÷(5﹣3),
=20÷2,
=10(条);
学生:3×10+16=46(人);
答:学校共有学生46人.
故答案为:46.
5.解:[(15+7﹣10)×2+3]×2
=[12×2+3]×2
=[24+3]×2
=27×2
=54(米)
答:这捆电线原来长54米.
6.解:23×4+34×3﹣27×6,
=92+102﹣162,
=194﹣162,
=32.
答:第4个数是32.
故答案为:32.
7.解:504÷8÷(108÷3÷4)﹣=504÷8÷9﹣4,
=63÷9﹣4,
=7﹣4,
=3(名),
4,
答:需增加3名,
故应填:3.
8.解:长方形长比宽多:38﹣31=7(米),
长方形宽:(38﹣7×2)÷3,
=24÷3,
=8(米),
长:8+7=15(米),
(15+8)×2,
=23×2,
=46(米),
答:长方形ABCD的周长46米.
9.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.
解:1024×1=1024
1024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.
32×4=128
答:正方形的周长是128.
【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.
10.
解:2×2×5=20
答:正方形ABCD的面积是20.
故答案为:20.
【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.
11.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);
那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.
解:根据题意可得:
快车与慢车的速度和:315÷21=15(米/秒);
坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);
答:坐在快车上的人看见慢车驶过的时间是20秒.
故答案为:20.
【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.
12.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.
解:2014÷9=223…7,
循环了223次后,还剩7个,里面有4个黑棋子,
223×6+4
=1338+4=1342(个)
答:其中黑棋子的个数是1342个.
故答案为:1342.
【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.
13.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:
剩下的130个对应着箭头部分,然后列式解答;
(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.
解:(1)(130﹣10)÷2
=120÷2
=60(个)
60×6+10
=360+10
=370(个)
答:水果店原有370个火龙果.
(2)370×2=740(个)
740﹣60×10
=740﹣600
=140(个)
答:还剩140个猕猴桃.
【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.
14.解:(35﹣7)×7÷2
=28×7÷2
=98(平方米)
答:这块养猪场的面积是 98平方米.
故答案为:98.
15.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.
解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:
(31﹣1×2)÷(2×2﹣3)
=29÷1
=29(次)
3×29+31
=87+31
=118(个)
答:袋中原有黑子 118个.
故答案为:118.
【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.